# Pollen Morphological Study of Some Selected Flowering Plants within Adekunle Ajasin University Main Campus, Akungba-Akoko, Ondo State, Nigeria

Benjamin Christopher Essien and Shadrach Opeyemi Fatoyinbo

## ABSTRACT

On the Adekunle Ajasin University Main campus, Akungba-Akoko, Ondo State, Nigeria, the pollen morphological study of seven (7) flowering plant species representing three (3) angiospermic plant Families (Asteraceae, Euphorbiaceae, and Fabaceae sub-family Caesalpinoideae) was examined, analyzed, and studied palynologically to determine the morphological features and attributes as an aid in the identification and classification of its members within each family. Pollen grains from fresh polleniferous materials were extracted using acetolysis methods. Detailed morphological evaluations were performed at x100 magnification. Results showed similarities and differences between species in the same genera, as well as differences between species in other families. Pollen study of these species revealed several similarities between species within the same family. Aperture type, forms, pollen grain size, sculpturing pattern, pollen dimension, and exine pattern were all studied for differences and similarities. Euphorbia hirta L and Euphorbia heterophylla L, both Euphorbiaceae species, have tricolpate apertures, are prolate in shape, reticulate, and contain small to medium pollen sizes. Asteraceae has tricolporate apertures, prolate spheroidal shapes, spinate, short and long spines, and pollen sizes ranging from microscopic to enormous (Ageratum conyzoides L, Tithonia diversifolia, and Tridax procumbens). Pollen from the family Fabaceae subfamily Caesalpinioideae (which includes Caesalpinia pulcherrima (L.) Swartz. and Senna alata (Linn.) Roxb) were found to be subprolate, coarsely reticulate, tricolporate, and with pollen sizes ranging from medium to large. Aperture measures such as number and diameter, pollen size, and spine height were suggestive in all of the species studied. Because all of the species studied exhibited comparable form and symmetry, they were grouped together and assigned to the same family.

**Keywords:** Asteraceae, Caesalpinioideae, Euphorbiaceae, Pollen morphology.

Published Online: August 10, 2022

ISSN: 2976-5412

DOI: 10.24018/ejbotany.2022.1.1.10

#### B. C. Essien \*

Department of Biology, Faculty of Natural & Applied Sciences, Nigerian Army University Biu, Nigeria

(e-mail: benjaminessien8@gmail.com) S. O. Fatoyinbo

Department of Plant Science & Biotechnology, Faculty of Science, Adekunle Ajasin University, Nigeria

\*Corresponding Author

### I. Introduction

Pollen grains are known to be the male microgametophytes of seed plants, which produces male gametes. They have been dispersed insects (entomophilous) and (anemophilous) respectively. When pollen grains are been dispersed, they are carried from the stamens to the pistil of flowering plants or from the male cone to the female cone of coniferous plants, for pollination to takes place (Shivanna, 2005). Palynology is a Science that studies pollen grains and spore morphology and this has found its practical applications in plant systematics, medicine, criminology, biogeography, agriculture, aeropalynology and stratigraphy for correlation of soil bearing rocks strata, etc. (Ige, 2009; Essien, 2020; Ige & Essien, 2021).

Pollen analysis has been widely used to trace the history of cultivated and uncultivated plants, according to Meo and Khan (2004). The process of cross-pollination involves the transfer of haploid male genetic material from one flower's anther to the stigma of another (Shivanna & Tandon, 2020). Occurrence of self-pollination on the other hand happens when the anther of the same flower pollinates its stigma.

Analysis of fossil pollen grains is the most important approach to reconstruction of past flora, vegetation and environment (Sowunmi, 1987; Sowunmi, 1981a; 1981b; Traverse, 1988; Faegri & Iversen, 1989; Ige & Essien, 2019). Pollen identification: the basis of palynology, is based exclusively on pollen morphology (Shubharani et al., 2013; Paul et al., 2014; Essien & Ige, 2019). Understanding the functional features of pollen, such as pollination biology and pollen-pistil interaction, requires knowledge of pollen morphology (Shivanna & Johri, 1989; Shivanna, 2005). Pollen morphology is particularly significant in taxonomy, phylogeny, palaeobotany, aeropalynology, and pollen allergy (Sowunmi, 1987; Essien, 2019). Pollen grain from various plants can serve as a source of nectar and apiary development success is tied to pollen meal for honeybees (Kalpana & Ramanujam, 1997).

In this study, samples of fresh polleniferous materials were gotten from three (3) different angiospermic plant families which include those of the Families Asteraceae, Euphorbiaceae and Fabaceae sub-family Caesalpinoideae.

Within the order Asterales, there are around 32,000 recognized species of flowering plants divided into over 1900 genera (Barreda et al., 2015). The composite or sunflower family is a frequent name for this family. Asteraceae includes shrubs, vines, and trees, as well as annual, biennial, and perennial herbaceous plants (The Plant List, 2016). The family covers a wide range of environments, ranging from sub-polar to tropical (MBG, 2013). The presence of hundreds of small individual florets bound together by protective involucres in flower heads, or more properly, capitulla, is the most prevalent feature of this family. The Asteraceae family is important economically since it produces basic foods, garden plants, and herbal medicines (Judd et al., 2007). Ageratum conyzoides, Tridax procumbens, and Tithonia diversifolia are the plants researched in this family.

Euphorbia is a flowering plant genus with a wide range of species. Euphorbia is a genus in the Euphorbiaceae family, also known as the spurge family. Euphorbias can range in size from tiny annuals to enormous, long-lived trees. It is one of the largest flowering plant genera, with over 2,000 species (Stebbins & Hoogland, 1976). The plants all have a deadly, milky, white latex-like sap as well as distinctive and distinct floral structures. The genus may be defined by the shape and structure of its flower heads, or by the qualities of its members' gene sequences. The head of its flower seems to be a single blossom (a pseudanthium) when viewed in its entirety (PBI, 2019). Euphorbia hirta and Euphorbia heterophylla are the species researched in this family.

The Fabaceae family of flowering plants is a big and commercially important one. Trees, shrubs, and perennial or annual herbaceous plants with easily identifiable fruit (legume) and compound, stipulate leaves are included (Stevens, 2006). With over 765 genera and nearly 20,000 recognized species, the family is the third biggest land plant family in terms of number of species, after Orchidaceae and Asteraceae (Watson & Dallwitz, 2007). The Fabaceae family includes anything from enormous trees (like Koompassia excelsa) to little annual herbs, with the bulk of them being herbaceous perennials. Inflorescences of this family are ambiguous and sometimes reduced to a single bloom. Following fertilization, the blooms produce legume-like fruits with a short hypanthium and a solitary carpel with a short gynophore (Watson & Dallwitz, 2007). Ceasalpinia pulcherrima and Delonix regia, both belonging to the Caesalpinioideae subfamily, were the plants researched.

# II. MATERIALS AND METHODS

Ageratum conyzoides, Euphorbia hirta, Euphorbia heterophylla, Tridax procumbens, Tithonia diversifolia, Caesalpinia pucherrima, and Senna alata anthers were gathered from fresh flowers on the Adekunle Ajasin University Main campus in Akungba-Akoko. At the Adekunle Ajasin University Herbarium of the Department of Plant Science and Biotechnology, the collections were identified and authenticated. Acetic anhydride, ethanol, glacial acetic acid, sulphuric acid, microscope, oil immersion, cover slips, and glass slides were all used. With a piercing needle and a pair of forceps, anthers from both flower buds and fully opened flowers were carefully removed and crushed in a beaker containing ethanol. Before being decanted, these were sieved and centrifuged for 5 minutes at 2,000 revolutions per minute (RPM). The pollen sediments were treated with glacial acetic acid to eliminate water before acetolysis. The acetolysis mixture was made from acetic anhydride and concentrated sulphuric acid (H<sub>2</sub>SO<sub>4</sub>) in a 9:1 ratio. The sediments were boiled in a water bath according to Erdtman's (1969) procedures, which were adapted by Agwu and Akanbi (1985), Paul et al. (2014), and Essien and Ige (2019). The mixture was placed in a water bath at 100 degrees Celsius for 5 minutes, agitated, centrifuged for 5 minutes, and the supernatant decanted. After being rinsed with glacial acetic acid, the precipitates were washed twice with distilled water, centrifuged, and decanted. The recovered precipitates were kept in glycerin and ethanol solution in plastic vials (2:1). On a microscope slide, one drop of properly agitated precipitates suspension was mounted and covered with an 18×18mm cover slip. To keep the precipitates from drying out, the mount was coated with colorless nail varnish (cortex). Microscopically, the prepared slide was examined with an Olympus microscope at x40 magnification for counting and a Leica microscope at x100 magnification for comprehensive morphological examinations. With the use of reference descriptions and photomicrographs, pollen identification, morphological investigation, and analysis were completed.

#### III. RESULTS AND DISCUSSIONS

Two plant species each in the Family Euphorbiaceae and Fabaceae sub-family Caesalpinoideae namely: Euphorbia hirta, Euphorbia heterophylla, Caesalpinia pulcherrima and Senna alata and three plant species in the Family Asteraceae: Ageratum conyzoides Tridax procumbens and Tithonia diversifolia respectively were studied and analysed palynologically. For each pollen type studied, the morphological features that were investigated include but not limited to aperture type, exine pattern, exine thickness, exine sculpturing, polarity, symmetry and shape, and pollen size. An average of ten (10) pollen grains was utilized to obtain the dimensions and other pollen morphological features, which aided in the easy description and identification of the pollen investigated.

# A. Description of Pollen Morphological Features

Euphorbia hirta

**Aperture:** Tricolpate (aperture with three

colpi), colpi is clearly distinct.

Exine pattern: Sexine finely reticulated, nexine

thinner than sexine.

Medium **Exine thickness:** 

**Sculpturing:** Fine reticulation

**Polarity:** Isopolar

**Symmetry:** Radially symmetrical Pollen shape: Subprolate to prolate

Pollen size: Small size

**Dimension:**  $P=19.05 \mu m (16.7-21.4) \mu m$ 

 $E=16.55 \mu m (13.6-19.5) \mu m$ 

P/E = 1.15

Longest axis: 21.4 µm

Euphorbia heterophylla

Aperture: Tricolpate (aperture with three

colpi), colpi not clearly distinct.

Exine pattern: Sexine is thick; Gammate

**Exine thickness:** Medium

**Sculpturing:** Coarsely reticulated

**Polarity:** Isopolar

**Symmetry:** Radially symmetrical Pollen shape: Prolate spheroidal Pollen size: Medium size

**Dimension:**  $P=25.35 \mu m (22.6-28.1) \mu m$  $E=25.1 \mu m (20.5-29.7) \mu m$ 

P/E = 1.01

Longest axis: 29.7 µm

Ageratum conyzoides

**Aperture:** Tricolporate; 3 aperture with colpi

and pore, pores are densely

situated

Exine pattern: Spinate

**Exine thickness:** Pollen wall is thin

Spinules, Echinate; having very **Sculpturing:** 

short/small spines, thin walls.

Isopolar **Polarity:** 

**Symmetry:** Radially symmetrical Pollen shape: Prolate-spheroidal, circular.

Pollen size: Small size

**Dimension:**  $P = 20.05~\mu m~(17.8\mbox{-}22.3)~\mu m$ 

 $E=18.35 \mu m (21.7-15.0) \mu m$ 

P/E = 1.11

Longest axis: 22.3 µm

Tridax procumbens

**Aperture:** Tricolporate; 3 aperture with colpi

and pore, pores are densely

situated

Exine pattern: Spinate

**Exine thickness:** Pollen wall is thin

**Sculpturing:** Spinate; having spines, thin walls.

Polarity: Isopolar

Radially symmetrical **Symmetry:** Prolate-spheroidal Pollen shape:

Pollen size: Similar to Tithonia diversifolia in

pollen size

**Dimension:**  $P=38.2 \mu m (30.7-45.7) \mu m$ 

 $E=35.7 \mu m (29.6-41.8) \mu m$ 

P/E = 1.07

Longest axis: 45.7 µm

Tithonia diversifolia

**Aperture:** Polycolporate; apertures

than 6 colpi and pores

Spinate Exine pattern:

**Exine thickness:** Pollen wall is thick

**Sculpturing:** Spinate (Having longer

sharper spines), thick walls.

**Polarity:** Isopolar

**Symmetry:** Radially symmetrical Pollen shape: Prolate-spheroidal Pollen size: Large in size

**Dimension:**  $P=40.95 \mu m (31.2-50.7) \mu m$ 

E= 37.35 μm (31.7-43.0) μm

P/E = 1.09

Longest axis: 50.7 µm

Caesalpinia pulcherrima

**Aperture:** Tricolporate; 3 apertures with

colpi and pore

Exine pattern: Sexine thicker than nexine

**Exine thickness:** Pollen wall is thick **Sculpturing:** Coarsely reticulate

**Polarity:** Isopolar

**Symmetry:** Radially symmetrical Pollen shape: Prolate-spheroidal Pollen size: Large in size

**Dimension:**  $P = 45.6 \mu m (38.7-52.5) \mu m$ 

 $E=40.55 \mu m (34.3-46.8) \mu m$ 

P/E = 1.12

Longest axis: 52.5 µm

Senna alata

**Aperture:** Tricolporate; 3 aperture with colpi

and pore

Exine pattern: Nexine is thinner, granulate

**Exine thickness:** Pollen wall is thick **Sculpturing:** Coarse scabrate **Polarity:** Isopolar

**Symmetry:** Radially symmetrical

Pollen shape: Sub-prolate Pollen size: Medium in size

**Dimension:**  $P = 32.25 \mu m (28.3-36.4) \mu m$ 

 $E=30.55 \mu m (26.6-34.5) \mu m$ 

P/E = 1.05

Longest axis: 36.4 µm

Pollen morphology has great significance in the taxonomy of angiosperms and in revealing inter- relationship among them (Moore & Webb, 1978). The species studied have some features which support their classification as members of a family. Some of these features are useful tools in delimiting the different species as distinct species. In this study, variations within species of the same genera and/or family were reduced. These variations were observed in their aperture type, exine pattern, shapes, sizes, sculpturing pattern and their polar and equatorial dimensions (Table I). Members of the same genera and/or family had most of their morphological features in common. For example, in the Family Euphorbiaceae, Euphorbia hirta and Euphorbia heterophylla were reported to have reticulate sculpturing pattern and tricolpate aperture respectively. Variation between Euphorbia hirta and Euphorbia heterophylla in terms of pollen sizes is not much prominent as it ranges from small size in Euphorbia hirta to medium size in Euphorbia heterophylla. The difference could have been much more pronounced had it been one is small and the other large.

Pollen grains from the Asteraceae family are spheroidal and have colporate pores. These openings on the wall surface were interpreted by Wodehouse (1935) as furrows that had shortened to the point where they matched the size of the enclosed pores. The pollen of Ageratum conyzoides, Tridax procumbens and Tithonia diversifolia were reported to be spinate; that is, they possess spines. In terms of pollen size, Tridax procumbens is similar to Tithonia diversifolia whereas Ageratum conyzoides are small in size and also echinate (having small spines). The pollen walls of Ageratum conyzoides and Tridax procumbens are thin but that of Tithonia diversifolia is thicker than the other species within

TABLE I: SUMMARY OF POLLEN MORPHOLOGICAL CHARACTERISTICS OF THE SPECIES STUDIED

| Pollen Morphological | Euphorbia                  | Euphorbia                             | Ageratum                          | Tridax                | Tithonia              | Caesalpinia                      |                                    |
|----------------------|----------------------------|---------------------------------------|-----------------------------------|-----------------------|-----------------------|----------------------------------|------------------------------------|
| features             | hirta                      | heterophylla                          | conyzoides                        | procumbens            | diversifolia          | pulcherrima                      | Senna alata                        |
| Polar distance       | 19.05                      | 25.35                                 | 20.05                             | 38.2                  | 40.95                 | 45.6                             | 32.25                              |
| Mean and Range (µm)  | (16.7-21.4)                | (22.6-28.1)                           | (17.8-22.3)                       | (30.7-45.7)           | (31.2-50.7)           | (38.7-52.5)                      | (28.3 - 36.4)                      |
| Equatorial distance  | 16.35                      | 25.1                                  | 18.35                             | 35.7                  | 37.35                 | 40.55                            | 30.25                              |
| Mean and Range (µm)  | (13.6-19.5)                | (20.5-29.7)                           | (21.7-15.0)                       | (29.6-41.8)           | (31.7-43.0)           | (34.3-46.8)                      | (26.6-34.5)                        |
| P/E                  | 1.15                       | 1.01                                  | 1.11                              | 1.07                  | 1.09                  | 1.12                             | 1.05                               |
| Pollen shape         | Sub-prolate to prolate     | Prolate<br>spheroidal                 | Prolate<br>spheroidal<br>circular | Prolate<br>spheroidal | Prolate<br>spheroidal | Prolate<br>spheroidal            | Sub-prolate                        |
| Aperture             | Tricolpate                 | Tricolpate                            | Tricolporate                      | Tricolporate          | Polycolporate         | Tricolporate                     | Tricolporate                       |
| Exine pattern        | Nexine thinner than sexine | Rather thick sexine pattern, Gammate. | Spinate                           | Spinate               | Spinate               | Sexine<br>thicker than<br>nexine | Granulate,<br>nexine is<br>thinner |
| Sculpturing          | Fine reticulation          | Coarsely reticulation                 | Echinate/spinules                 | Long spines           | Longer spines         | Coarsely reticulate              | Coarsely scabrate                  |
| Pollen size          | Small                      | Medium                                | Small                             | Large                 | Large                 | Large                            | Medium                             |

the same Family. In the family Fabaceae sub-family Caesalpinioideae, the pollen grains of the species studied were all reported to be generally radially symmetrical, isopolar and tricolporate. The tectum is coarse, either coarsely reticulate or coarsely scabrate. Caesalpinia pulcherrima had coarsely reticulate tectum with distinct colpi while Senna alata is coarsely scabrate. The shape is prolatespheroidal, prolate or sub-prolate. The size of the pollen of Caesalpinia pulcherrima is large; the polar and equatorial dimension ranges from 45.6 µm (38.7-52.5 µm) polar dimension to 40.55 µm (34.3-46.8 µm) equatorial dimension respectively while that of Senna alata is medium in size ranging from 32.25 µm (28.3-36.4 µm) polar dimension to  $30.55 \, \mu m \, (26.6-34.5 \, \mu m)$  equatorial dimension (Table I).

Generally, comparing the pollen morphology of all the species studied from each Family, their distinct morphological characters create the difference amidst taxon. The aperture type is normally consistent within a family. The Family Euphorbiaceae is majorly tricolpate, reticulate, prolate and mostly not enlarged in size. The Family Asteraceae is completely distinct with their colporate aperture type, consisting of spines; prolate-spheroidal in shape and have all ranges of size whereas the family Fabaceae subfamily Caesalpinioideae are mostly tricolporate in aperture type, coarse reticulation in terms of exine pattern and unlike species from other families, their pollen grains were not small in size.

## IV. CONCLUSION

The use of these quantitative and qualitative features to analyze pollen morphology of some of these selected plant species from the Family Euphorbiaceae, Asteraceae, Fabaceae sub-family Caesalpinoideae provides justification for the existing classification of the individual plant into each plant family. This research discovered that there are some commonalities among species within the same family, as well as distinct variations among species within other families. Aperture types and numbers, exine pattern, pollen form, sculpturing pattern, size, polar and equatorial dimensions, and other morphological features are used to express these differences and similarities. The findings of this study are expected to aid in the detection, identification and classification of its members within each family. Because of the similarities and differences in pollen morphology among the species studied, pollen features could be beneficial in determining affinity and taxon categorization. This research is expected to be crucial for identifying these floras and enhancing the conservation status of these economically significant plants, as well as serving as a reference tool for grouping plant species into their respective families.

#### CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

#### REFERENCES

- Agwu, C. O. C, & Akanbi, T. O. (1985). A palynological study of honey from four vegetation zones of Nigeria. Pollen et Spores, 27, 335-348.
- Barreda, V. D., Palazzesi, L., Telleria, M. C., Olivero, E. B., Raine, J., & Forest, F. (2015). Early evolution of the Angiosperm Clade Asteraceae in the Cretaceous of Antarctica. Proceedings of the National Academy of Sciences of the United States of America. 112 (35), 10989-1994.
- Chisholm, H. (1911). Pollination, Encyclopedia Britannica. (11th Ed.). Cambridge University Press. pp. 2-5.
- Erdtman, G. (1969). Handbook of Palynology. An introduction to the study of Pollen grains and Spores. Hafnar Publishing Company. pp. 486.
- Essien, B. C. & Ige, O. E. (2019). Diversity, morphology and comparative study of season of airborne pollen grains abundance in four Local Government Areas in Akoko division, Ondo State, Nigeria. South Asian Research Journal of Biology and Applied Biosciences, 1(1), 9-
- Essien, B. C. (2020). The study of floral activities and flowering calendar of some selected plant taxa in Akoko environment, Ondo State, Nigeria. GSC Advance Research and Reviews, 4(1), 59-68.
- Faegri K, & Iversen, J. (1989). Textbook of Pollen Analysis. John Wiley and Sons. pp. 487.
- Ige, O. E. (2009). A Late Tertiary pollen record from Niger Delta, Nigeria. International Journal of Botany, 5(3), 203-215.
- Ige, O. E., & Essien, B. C. (2019). The applications of pollen analysis in environmental monitoring in Akoko North-East Local Government Area of Ondo State, Nigeria. GSC Biological and Pharmaceutical Sciences, 8 (1), 64-77.
- Ige, O. E., & Essien, B. C. (2021). The role of non-pollen palynomorphs in Quaternary Palaeoecological study of Akoko environment, Ondo State, Nigeria. International Journal of Innovative Agriculture & Biology Research, 9(1), 1-10,
- Judd, W. S., Campbell, C. S., Kellogg, E. A., Stevens, P. F., & Donaghue, M. J. (2007). Plant Systematics: A Phylogenetic Approach (3<sup>rd</sup> ed.). Sunerland: Sinauer Associates. ISBN 978-0878934072.
- Kalpana, T. P., & Ramanujam, C. G. K. (1997). Melisopalynology, bee plants and bee keeping potential in some coastal districts of Andhra Pradesh, India. Indian Bee Journal, 59, 1-8.
- Meo, A. A., & Khan, M. A. (2004). Diversity of Pollen Morphology in the Family Composite (Asteraceae) from Northern Areas of Pakistan. International Symposium on Biodiversity in Northern Areas of Pakistan. September 8-10, 2003.
- Missouri Botanical Garden (2015). Missouri Botanical Garden Plant Finder. St. Louis, MO, USA: Missouri Botanical Garden.

- Moore, P. D., & Webb, J. A. (1978). An illustrated guide to Pollen analysis. Hodder and Stoughton.
- Paul, E., Essien, B. C., Idachaba, S. O., Edegbo, E., & Tamenku, M. M. (2014). Comparative Study of Pollen Morphology of some members of Euphorbiaceae Family. Standard Research Journal of Agricultural Sciences, 2(4), 045-058.
- Planetary Biodiversity Inventory (PBI). Retrieved 1 Feb 2019.
- Shivanna, K. R., & Johri, B. M. (1989). The angiosperm pollen: structure and function. Wiley Eastern Limited. 374 pp.
- Shivanna, K. R. (2005). Pollen biology and biotechnology. Oxford & IBH Publishing Company, New Delhi. 301pp.
- Shubharani, R., Roopa, P., & Sivaram, V. (2013). Pollen morphology of selected bee forage plants. Global Journal of Bio-Science and Biotechnology, 2(1), 82-90.
- Sowunmi, M. A. (1981a). Late Quaternary environmental change in Nigeria. Pollen et Spores, 23(1), 125-148.
- Sowunmi, M. A. (1981b). Aspect of late Quaternary vegetational changes in West Africa. Journal of Biogeography, 8, 457-474.
- Sowunmi, M. A. (1987). Palynological studies in the Niger Delta. In: E.J. Alagoa, F.N. Anozie and Nwanna Nzewunwa (Eds.). The early history of the Niger Delta. Helmat Buske Verlag Hamburg. pp 29-59.
- Stebbins, G. L., & Hooglands, R. D. (1976). Species diversity, ecology and evolution in the primitive Angiosperm genus: Hibbertia (Dilleniaceae). Plant Syst. Evol., 125 (3), 139-154.
- Stevens, P. F. (2006). Angiosperm Phylogeny Website. Retrieved 28 April
- Traverse, A. (1988). Palaeopalynology. Boston Unwin Hyman Press. 442pp. The plant List: Compositae. Royal Botanic Gardens Kew and Missouri Botanic Garden. 2013. Retrieved 18 November 2016. www.theplantlist.org.
- Watson, L., & Dallwitz, M. J. (2007). The families of flowering plants: "Leguminosae". Retrieved 9 February 2008.
- Wodehouse, R. P. (1935). Pollen grains. McGraw-Hill Book Co.